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Abstract

GMM estimation currently requires all variables and observations
in one data set. This is not feasible in many settings. We propose
a technique to recover the GMM estimator if X- and Y-variables are
split over multiple data sets or if observations are in separate data
sets. Our estimator can also recover individual level regression pa-
rameters from aggregate data if shocks are also on aggregate levels
(like occupations, industries or regions). Our technique is also faster.
Besides simulations, we estimate a cross-European firm level produc-
tion function from national data sets and argue that the production
function differences across countries are likely statistical noise. We
also estimate the effect of labor supply shocks on firms’ innovation in
Prussia from 1895 to 1910, where no firm level data exists. Labor sup-
ply increases led to increased patenting by firms without a previous

patenting record, but not by incumbents.
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1 Introduction

The problem of unmergeable or siloed data has long been noted in applied
statistics. With the implementation of the EU General Data Protection Leg-
islation (GDPR) in 2016, European administrations are instructed to limit
data creation to what is necessary for the original purpose. German ad-
ministrators in particular have long followed this approach: The Institute for
Employment Research (IAB) collects employee biographies and the statistical
offices e.g. production data, but it is impossible to link the two because when
collection started, firms and employees did not give consent. The problem
is also latent in health related fields, where privacy concerns are especially
prevalent (Hallock et al., 2021), which often means that patient data has to
remain within hospitals. We argue that split data sets do not restrict the
researcher as much as previously thought.

This paper presents a new computational strategy for the linear GMM
estimator (3 = (Z’X)1(Z'Y)). We decompose the estimator into the
components of its constituent matrices, which can be computed within siloed
data sets. We show analytically that our estimator recovers the GMM param-
eters exactly even if data is stored across different data sets.! This algorithm
yields three improvements over conventional methods: First, it recovers B
while information on endogenous variables and outcomes is split over arbi-
trary unmergeable data sets without extracting individual level data. Second,
when exogenous shocks arrive at aggregate levels (e.g. the sector level trade
shocks of Autor et al. (2013) or regional shocks like in Danzer et al. (2024))
we can recover ,@ from aggregate statistics without any access to micro data.
Third, our estimator offers speed advantages since it is "embarrassingly par-

allel”, i.e. the computation can be split and relegated to an unrestricted

IThe code package attached to the paper contains a stata ado-file for distributed linear
GMM.



amount of CPUs with minimal overhead.

To contextualize these results, we discuss two simulations and two appli-
cations to actual data. In the simulations, we show that our computational
strategy recovers the GMM estimator both when variables are in different
data sets and when observations are. We also demonstrate that our algo-
rithm is faster than the conventional method and how to recover standard
erTors.

We apply our estimator to two actual data sets: First, we estimate a Euro-
pean production function. Firm level data is siloed at the national statistical
agencies and cannot be merged, which provides a challenge for the study of
the common market. We estimate production functions across all European
firms as a first step to such an analysis. Second, we recover parameters from
aggregate data alone: We study the effect of a labor supply shock on patent-
ing in Prussia: During the ”Grain Invasion” (1895-1913), cheap grain from
the Americas displaced Prussian agricultural workers. These workers moved
to the cities in large numbers. The size of the labor supply shock differed
across cities depending on the previous crop specialization of the surround-
ing countryside (Brauer and Kersting, 2024). While no firm level data has
survived in the historical record, the components that enter the matrices
Z'X and Z'Y have been published in the statistical yearbook of Prussia.
Our estimator is thus able to recover the firm level estimates from aggregate
data.

We are not the first to work with submatrices of the GMM estimator:
E.g. MacKinnon et al. (2023) use submatrices to compute jackknife standard
errors in a more efficient manner. In medicine, there is an initiative that
allows for estimation across samples in a way similar to our second use case
(Wolfson et al., 2010). Angrist and Krueger (1992) already suggested to
estimate Z'X and Z'Y in completely unrelated data sets. Karim et al.
(2024) present an estimator very close to traditional DiD that works if treated
and untreated observations cannot be pooled and use it to evaluate Canadian
hospitals. We develop a general framework that encompasses these special
cases and show the conditions under which any linear GMM estimation can

be carried out with unmerged data or even without micro data.



Previously, researchers have bridged across data sets with institutional
cooperation, but still rarely could run regressions ”across” data sets. The
need to maintain a research infrastructure to support these efforts in which
all parties are trusted with confidential individual level data also remains a
major hurdle for health research (Hallock et al., 2021). In economics, such
research networks are also prevalent but face similar issues. Nevertheless,
e.g. researchers can currently access European firm level data via the Comp-
Net project which aggregates ex ante decided moments of firm level data
(Lopez-Garcia et al., 2014) or the Micro Moments Database (Bartelsman
et al., 2017). This is enough to study e.g. European business dynamism
(Biondi et al., 2023). Alternatively, the Micro Data Infrastructure (Bar-
telsman et al., 2023) gives researchers access to actual European firm data
under specific conditions. Our algorithm can greatly reduce the costs asso-
ciated with such research by converting the intermediate steps of a GMM
estimation into aggregate data at the appropriate level. Data providers in
economics generally have extensive experience with disclosing such data. To
further aid them, we provide an in-built customized disclosure check that au-
tomatically deletes intermediate results that do not meet specified criteria.
Any data provider can thus set their own rules.

Section 2 derives our computational algorithm and discusses the condi-
tions necessary for computation of the point estimates and inference. Section
3 presents examples for the use of the technique. Section 4 concludes.

Foekioeikx Section on WLS vs. our technique.

Another approach to circumvent the problem of siloed data is to estimate
[ within each data set and to then export the coefficients, the variance co-
variance matrix and the sum of residuals. This then allows to compute an
inverse-variance weighted mean of the individual g as the overall estimate.
Depending on how exactly the variance-covariance matrices and sums of error
terms are used, this is equivalent to various special cases of FGLS estimation.
FLGS and GMM are identical if the data is known to be homoscedastic, in
which case our method would yield the same result.

Our method has two major advantages over this procedure: First, it

is more flexible in that it allows Y and X to be in different data sets,



too. In such a case, any FGLS method could not work, since the error
terms cannot be computed. Second, FGLS requires that the assumptions
about error term structure are actually correct. If the error term structure
is misspecified, the FLGS estimator can become biased. As a result, our
method of estimating GMM and then using numerical procedures (bootstrap
or jackknife) for inference is often preferred even without split data sets. The
correctly specified FLGS procedure is more efficient than our estimator only
if the individual data sets are large enough so that the variance-covariance
matrix can be estimated consistently within each data set. Thus, there may
be a place for FLGS if one knows the error structure and the data is large
enough so that FLGS can be performed, but not so large that the effciency

loss from GMM does not matter, et

2 Sample bridging GMM

2.1 Point estimation

In this section, we derive the analytical GMM estimator as a function of
aggregate statistics out of separate data sets. The standard GMM estimator
is defined as 8 = (Z'X)"D(Z'Y).2 In the joint data set, it would be trivial
to compute the result with any statistical software. However, we assume that
the data is split over different data sets. For ease of exposition, we stick to
4 data sets A, B,C, D, but the method extends to an arbitrary number of
data sets. Both the variables and the observations are spread over these four
data sets: A and B contain variables Z and Y, C' and D contain variables Z
and X . Observations 1 to K are only in data sets A and C, with the other
observations in B and D. Given these definitions of the data sources, we can

rearrange the traditional GMM formula:

2As usual, Y denotes the vector of the explained variable, X the endogenous explana-
tory variables and Z the instruments.
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[ is a function of sums of the product of pairs of variables if estimated
conventionally. Our computational strategy fully takes advantage of this:
The standard estimator sums up these products of variable pairs directly and
inverts Z’X. Our strategy is to compute the sums individually within each
data set and then use them to replicate the overall estimator. However, this
is just a variety of the computational strategy, not in the actual estimation.
Our computational strategy exactly recovers B under all the well understood
identifying assumptions of conventional GMM.

Some special cases illuminate the intuition behind our mathematical re-
sult: In the first case, data sets are identical in terms of variables, but cannot
be merged due to confidentiality. I.e. the researcher would like to ”append”
the data sets but cannot. In that case, A & C' and B & D are the same
data set and the technique stops essentially one step short of estimating (£
within each data set: Instead of reporting 8 = (Z'X)"D(Z'Y) in the two
data sets, the estimator reports Z’X and Z'Y’, from which both the within
sample and the across sample B can be computed. Section 3.2 reports an
example of such an application.

In the second case, two data sets cover different variables of the same
observations. l.e. the researcher would like to "merge” the data sets but

cannot. As long as the instruments Z are present in all data sets, the es-



timation can still proceed. This corresponds to two data sets where A only
contains X, = X and Z, = Z and data source C' only contains Yo =Y
and Zc = Z. Again, the standard computational strategy would not be
able to recover the estimator. However, using our method, we are able to
circumvent the merge entirely. This is also relevant when merges are legally
possible, but technically challenging. E.g. to study the effect of patents it
was often necessary to 'record link’ patent to firm or individual level data like
in Peruzzi et al. (2014); Kline et al. (2019); Akcigit and Goldschlag (2023).
Only Z needs to be present in all data sets. Since instruments Z are usually
not available in core data sets and have to be constructed by the researcher,
this is often not an impediment in practice.

A third special case is if the instruments are identical within data sets,
our estimator can recover ,é even without access to individual level data.
E.g. economic policies are different in different EU NUTS regions, but firm
level data is confidential and cannot be appended across regions. Another
example of such a data structure is in health economics, where treatment
policies differ between hospitals, but patient data is again confidential and
cannot leave hospitals. In this case, even aggregate data is enough to compute
B: Using z; = 74, we can simplify the sums in our matrix even further to
yield S0 (2! # ;) = 24 % K % 3. ;. This can be computed from aggregate
data. Section 3.3 showcases this use case on historical statistical data where
firm records did not survive.

A fourth special case is if all data can be assembled to one data set,
in which case our computational strategy collapses to the standard. How-
ever, even in such a case, there are substantial time savings that come from
parallelization as demonstrated by our simulations in section 3.1.

The matrices Z'X and Z'Y do not leak any firm level information: E.g.
the first entry simply equals the sum of Y in the data set. This does not run
afoul of confidentiality as long as results from regressions within each data

set can be published.?

3This methodology extends to nonlinear GMM, solved numerically. In this case, how-
ever, one must compute and store the sum of residuals for all different combinations of
possible coefficients in each data set. Summing up these values across all data sets will give
the sum of residuals across the whole sample. The coefficient combination with the small-



2.2 Inference

The precision of GMM is usually estimated using the sum of squared residuals
(Y — pX)(Y — 5X). This presupposes that X and Y are in the same
data set, which we are not willing to assume. The exact formula depends
on one’s assumption about heteroscedasticity, clustering etc. In the special
case where all data sets contain all variables (and just cannot be appended
in stat lingo), researchers can compute most standard variance estimators
by returning to the individual data sets with the estimated coefficients and
computing (weighted) sums of error terms.

Outside of this special case, it is not obvious how to compute standard
errors, since we cannot compute predicted values. However, non-analytical
solutions to inference are still possible. Our computational strategy is es-
pecially conducive to clustered standard errors via the jackknife procedure,
since we already compute the submatrices necessary for its efficient compu-
tation (MacKinnon et al., 2023). We compute standard errors this way when
estimating the effect of labor supply shocks on innovation in Prussia, where
no firm level data exists. This works because the intuitive strategy of the
jackknife is to consecutively drop clusters (not individual observations) and
observe the variance of the estimated coefficients. However, this commits
the researcher to clustered standard errors at potentially quite high levels of
aggregation, depending on the exact setup.

Last, bootstrapping standard errors is also possible. This is true for the
bootstrap equivalent of the jackknife presented above. However, bootstrap-
ping within each data set before aggregation can also yield non-clustered
standard errors or standard errors clustered at a lower level of aggregation.
It only requires that the IDs of the bootstrapped entities are the same in all
data sets: To avoid additional assumptions, we want to bootstrap whole ob-
servations, which requires coordinating which observations are drawn across
data sets without actually sending around ID lists. To do this, we implement

a special version of the bootstrap that uses the ID variables as seeds, thereby

est sum of residuals presents the numerical solution to the coefficient vector. However,
this is a computationally very expensive procedure.



guaranteeing that a certain observation is drawn the same number of times
in every disjoint part of the data set.

Technically, for each bootstrap iteration, we draw a Binomial distributed
random variable with p = % and n = N, where N still denotes the number
of observations in the entire data set. This is equivalent to the number of
successful independent draws of this observation from the entire data set by
the definition of the Binomial distribution. Using the ID of the observation
as the seed of the pseudo number generator guarantees that each observation

is drawn the same amount of times in each data set.

3 Applications

3.1 Examples: Simulations

To demonstrate our computational strategy, we simulate two different data
generating processes, confirm our equivalence result from section 2 in practice
and display the main applications. We also show the speed advantage of our
strategy.

First, we simulate a big data setting, an application which has become
an important part of the economy (Veldkamp and Chung, 2024). Consider a
firm monitoring machine failure from the readings of a set of 5 sensors report-
ing temperature fluctuations each second at various places in the machines.
Such data quickly accumulates: After one year, this creates a data set of 3.2
billion observations per machine. However, the algorithm we propose can
achieve this regression in a reasonable time by computing the sums consti-
tuting Z;'Zr and Z;'Y7 for every machine on a separate CPU. In a practical
application, one could even compute these running sums at measurement and
skip the need for data transfer and a data set entirely (distributed comput-

ing). Specifically, we rearrange equation (1) to yield
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where [ indexes the different data sets (= machines), each of which con-
tains N observations indexed by ¢. Table 1 reports the traditional OLS result
and the identical estimate obtained from our own algorithm, together with
computing times and data transfer requirements using both methods. To
attain the theoretically possible 75% runtime reduction with four machines,
one would have to leave the stata programming language to avoid as much
overhead as possible. While economists do not (yet) run regressions of such
magnitudes often, big data applications have gained relevance in economics.
The ability of our algorithm to bring an unbounded number of cores to bear
on such problems can already create substantial time savings for today’s
applications.

Second, we simulate a scenario with Y and X in different data sets with
the researcher unable to perform a merge. Consider a researcher trying to
merge patent data to economic variables. Patent data only contains string
names instead of any actual IDs. There is extensive work to disambiguate
names, add location variables from patent texts (Toole et al., 2021; Bergeaud
and Cyril, 2022) and use these variables to merge patents to other data (Pe-
ruzzi et al., 2014) via string matching. We argue that for some questions,
this is actually unnecessary. Specifically, we simulate a change of firms’ R&D
subsidy regime (Z), affecting their actual subsidy uptake (X) and patent-
ing outcomes (Y'). This is reminiscent of the data situation in Germany,
where EU subsidy generosity quasi-exogenously varies at the county level
(Brachert et al., 2019) and firm level subsidy data exists (Brachert et al.,
2018). Merging this information to statistical data sets is hard, especially
since administrative sources cannot be combined with each other (Fritsch
et al., 2020). However, the county level change in subsidy policy is trivial

to merge to both patent and statistical office data, so we rearrange equation

10



Table 1: Estimations from Simulations

Machine Failure Patent Merge
OLS B-GMM v B-GMM
X1 0.600%**  0.600%**
(0.004) (0.006)
X2 0.607***  0.607***
(0.004) (0.004)
X3 0.593%#*  (0.593%**
(0.004) (0.006)
X4 0.602%FF  0.602***
(0.004) (0.005)
X5 0.599***  (0.599***
(0.004) (0.006)
lag R&D expenses 1.001%FF  1.001°%**
(0.003) (0.003)
R? 0.00 0.00 0.17 0.17

Notes: Result of both simulation exercises. The columns OLS/IV
refer to the estimate from the conventional estimator, B-GMM refers
to our new estimate. Heteroscedasticity robust standard errors in
column 1, 3 and 4. Cluster robust (jackknife) standard error at the

machine level in column 3 to demonstrate both versions of inference.
Significance: *10 %, **5 %, ***1 %.

(1) to yield

B=(ZX)N2ZY)=

A S
dodlul o DA D A

which allows us to estimate the IV coefficient without merging Y and X into

the same data set. Table 1 again reports the traditional IV result together

with the identical estimate computed from our algorithm.
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3.2 Use Case 1: European Production Function Esti-

mation

A representative data set of European firms does not exist. Researchers have
to either restrict their analysis to singular countries or use BvD data for
Europe (AMADEUS, ORBIS) which does not cover new or privately owned
firms well. To alleviate this problem, the CompNet network unifies variable
definitions across European firm level data sets and publishes meso aggre-
gated data of a host of indicators. Nevertheless, regressions with observations
from different countries are not possible. Neither are they feasible with the
Micro Data Infrastructure (Bartelsman et al., 2023), which allows direct ac-
cess to the firm level data sets of some countries.

This is an issue for productivity analysis insofar as firms’ productivity can
only be confirmed if it is measured as the residual from the same production
function. We can solve this issue by estimating a cross-country production
function for European two digit industries. We ran our codes in the experi-
mental module of CompNet 2019, which 14 European countries consented to
run, namely Belgium, Croatia, Czechia*, Denmark, Finland, Italy, Lithuania,
Netherlands, Portugal, Romania, Slovenia, Spain, Sweden and Switzerland.
For a detailed description of the underlying data sets, their coverage and
sampling processes, we refer the reader to Lopez-Garcia et al. (2014).

To recover a measure of firm productivity (i.e. TFPR), we estimate rev-
enue as a Cobb-Douglas function of labor, capital and intermediate inputs.

After taking logs, one estimates
Gir = Bl + B ki + B miy + wir + €41, (4)

where l;;, k; and m; denote log labor, intermediates and capital, ¢;; de-
notes random measurement error or short term shocks and firm log TFP is
wit. Equation (4) is presumably endogenous, most importantly because in-
put choices l;;, k;; and m;; are themselves decisions that the firm makes after

observing its own productivity w;, which is part of the error term. To cir-

4The results below do not contain Czechia, where code execution stopped before the
results could be constructed.
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cumvent this endogeneity problem, researchers routinely use the Wooldridge
(2009) estimator, which assumes that firms can no longer change their static
inputs (labor and capital in our case) by the time they observe this year’s
productivity. This assumption makes it possible to construct and estimate a
control function that captures the response of firms to productivity shocks.
We employ this technique as an alternative specification to deal with en-
dogeneity concerns, which are however not at the center of our discussion.
More evolved control function estimators (Ackerberg et al., 2015; De Loecker
et al., 2016) are solved numerically, which would still in principle be possible
to estimate by extracting the sum of residuals for different parameteriza-
tions in each country and then minimizing the sum across countries, but this
technique placed undue burdens on the data providers, given that actual
estimates are usually very close to the simple versions.

Figure 1 compares both the returns to scale and the labor coefficients of
the joint estimation and the within country estimates. They demonstrate
how volatile the within country estimations can be. Generally, the control
function approach yields more volatile estimates than OLS, a well known
problem that is again exacerbated by small sample sizes. Even the joint
control function estimation still has outliers, e.g. ”Beverages” and the ” Other
transportation equipment” with returns to scale of roughly 1.5. The average
returns to scale of slightly above 1 are to be expected since concentration
measures for the European market are trending upwards (Bighelli et al.,
2022). This volatility could either be because the different countries have
legitimately different production functions or it could be random noise.

To further explore the differences between the joint and the within coun-
try estimates, we analyze which countries have systematically different re-
sults. Specifically, we use 296 sector-country level estimation results from

equation (4) and estimate

ﬁc - ﬁj = Ye + Ps + Ue,s (5)

where 3. is the country specific regression coefficient, 3; is the jointly esti-

mated coefficient, 7, is a country fixed effect and p, is a sector specific fixed
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Figure 1: Labor coefficient and returns to scale when estimating a standard
Cobb-Douglas revenue production function using OLS or a control function
approach. Red dots give the returns to scale estimated in the cross country
data while blue circles give the individual country estimates. Diamonds
denote the (weighted) average of country coefficients. Note the different
scaling on the OLS and the control function graph. Data: CompNet
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effect. Note the absence of a constant. Table 2 reports the 7. from this
regression. If countries’ production functions differ systematically because of
e.g. a better educated workforce in one country, we would expect the labor
coefficient to be larger in all sectors of the economy. However, if the devi-
ations are largely random measurement error, they cannot be explained by
country fixed effects.

Overall, we find the latter: Out of the 13 countries, only Sweden, Den-
mark, Lithuania and Croatia have systematic deviations from the joint OLS
estimate. These are potentially problematic insofar as they might be in-
terpreted as these countries having systematically different production func-
tions. Interestingly, all of them have substantially, arguably even implausibly
higher labor coefficients. E.g. Sweden allegedly uses twice as much labor to
produce the same goods as the average of the other countries. Given the very
high labor costs and capital stock of the country, that seems quite unlikely.
The only other country with such high labor coefficients is Croatia, but it
has totally different conditions. Of these four, only Croatia has a similar
deviation in the control function approach.® All of these outlier countries
have small data sets. All in all, we do not think that these differences can
be interpreted as different, country specific production functions. Instead we

see them as random errors caused by the small sample size in some countries.

3.3 Use Case 2: Estimating the Effect of a Labor Sup-
ply Shock on Innovation from destroyed Prussian
firm data

Firm level data from Germany does not exist prior to 1974. Nevertheless, we

use our computational strategy to study the effect of a labor supply shock

on innovation decisions of Prussian firms from 1895-1910. This is possible

since labor supply shocks are by design at the level of the local labor market,

®We have to exclude roughly 20% of country-sector production function estimates be-
cause they are obviously unusable, i.e. they have negative coefficients or returns to scale
above 2.
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Table 2: Country Differences in Production Functions

RTS (OLS) o (OLS) RTS (CC) ol (CC)
(1) (2) (3) (4)

BELGIUM 0.000 0.000 0.000 0.000
() () () ()
CROATIA 0.013  0.265%%%  0.001  0.372%%*
(0.016) (0.038)  (0.101)  (0.130)
DENMARK 0.039%%  0.213%%%  0.052 -0.013
(0.016) (0.038)  (0.101)  (0.130)
FINLAND -0.020 0.036 0.071 0.071
(0.016) (0.038)  (0.103)  (0.133)
ITALY 0.014 0.015 0.172 0.034
(0.016) (0.038)  (0.106)  (0.136)
LITHUANIA 0.082%%%  0.144%%%  _0.060  -0.148
(0.016) (0.038)  (0.104)  (0.134)
NETHERLANDS -0.021 -0.008 0.077 -0.072
(0.016) (0.039)  (0.101)  (0.130)
PORTUGAL 0.033%*  0.091%*  0.151 0.243
(0.016) (0.038)  (0.118)  (0.152)
ROMANIA 0.034** 0.001 0.002 -0.155
(0.016) (0.039)  (0.106)  (0.137)
SLOVENIA 0.005 0.045 0.195* 0.119
(0.016) (0.039)  (0.108)  (0.139)
SPAIN 0.026 0.086%*  0.344%%*  _0.030
(0.016) (0.038)  (0.108)  (0.140)
SWEDEN -0.008  0.283%%%  _0.200%*  -0.060
(0.016) (0.038)  (0.098)  (0.127)
SWITZERLAND 0.003 0.084%*  -0.051 0.201
(0.016) (0.038)  (0.110)  (0.142)
N. Obs 296 296 231 231
R sq 0.310 0.411 0.631 0.508

Notes: Results obtained from equation (5). Columns report differences in
returns to scale (RTS) and the labor coefficient ! for the OLS and the control
function approach. Belgium is used as baseline. Output from sector level fixed
effects is not shown. The number of observations changes because all sector-
country production functions with returns to scale more than 100% higher than
the joint estimate were dropped. Data: CompNet

Significance: *10 %, **5 %, ***1 %.
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which we proxy with the county. The Prussian Statistical Office published
the number of firms per industry sector and their employment at a county
level in 1882, 1895 and 1910, the years of the imperial census.

We use this data to study the effect of the ” Grain Invasion” — the inflow of
cheap American grain into Europe — on industrial firms and their innovation
decisions in Prussia. Brauer and Kersting (2024) report substantial effects of
this trade shock on agricultural counties following the methodology of Au-
tor et al. (2013), but a different response compared to contemporary shocks:
Workers in Prussia moved from affected counties into the cities, which accel-
erated structural change substantially. Since 76% of all patents came from
these big cities even prior to the shock, we focus on the innovation there, not
in the rural counties originally hit by the ”Grain Invasion”. Even patents
concerning agricultural techniques are often developed in the agricultural
colleges in the cities and thus not easily attributable to any specific shock.

The innovation effect of trade shocks is usually studied in firm level data
(Bloom et al., 2016; Autor et al., 2020; Brauer et al., 2023), while the effects
of labor supply shocks are often estimated with aggregate or cross sectional
data (Danzer et al., 2024). Even though no firm level data exists, we can
estimate both versions and shed light on the difference between the two. We

estimate

A1895,19100F = G1895,1910(Lc) + BoXe + uy (6)

where Ajggs 1910pf denotes the change in the number of patents of firm
f and g1895.1910(Lc) denotes the growth rate of the county population, both
between 1895 and 1910. X. denotes a set of county level control variables,
specifically the share of agricultural employment, the share of large estates
among farms, the distance to the next metropolis and the installed stock
of steam engines (measured in horsepower in 1875). We follow Brauer and
Kersting (2024) in this, who argue these variables proxy the growth potential
of the counties apart from trade or labor supply shocks. We also use their
instruments: the import shock due to grain imports per county and the

indirect shocks due to immigration from shocked counties constructed from
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province and county migration data prior to the shock. We refer the reader
to their paper for a detailed description of the construction of these variables.
Our estimation strategy leaves us with a Z vector of four control variables
and two instruments (direct and indirect trade shock), and an X vector of
the same four exogenous regressors and county population growth rate L.

To compute the results, we rearrange equation (1) to

-1

Nryr Nr  ZiN;

B=|D_ |aNm| | x [ D] |aN zain, (7)
i i

Note that all instruments are constant at the level of each data set indexed
I (i.e. county). This allows us to reformulate the regression coefficients not
just as a function of the underlying micro data, but also as a function of very
commonly published aggregate statistics (means and observations counts).
Table 3 reports the results from this estimation technique and the regression
of aggregates. We have dropped outliers, singleton counties and counties
without information on the number of firms to arrive at our estimation sam-
ple.

Column (1) of table 3 reports the aggregate regression in percentages:
The effect of increasing the population by 1% is a 1.8% increase in patenting.
Patents growing faster than population is surprising insofar as the immigrants
were low education farm hands, so their own contribution to patents is likely
minimal. However, it fits into the overall picture of much better adjustment
in Prussia: Instead of suffering the losses in affected counties, workers moved
to the cities while cities” industries absorbed them without income per capita
losses. The rise in patenting might be one of the channels through which cities
could do this. Column (2) estimates the same relationship, but uses the first
difference in the number of patents and the population increases. This is
unusual, but required for firm level analysis, since first differences add up to
the aggregate first difference (which is reported in the statistical yearbooks),
while individual percentage increases do not add up and thus cannot be
recovered. Column (3) re-estimates column (2) with our own estimator, but

while setting the number of firms in each county N; to one. This recreates
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Table 3: The Effect of a Labor Supply Shock on Innovation in Prussia 1895-1910

Aggregate Firm Level
v 1Y B-GMM G-GMM B-GMM
Pop. growth (%) 3.243%*
(1.52)
Pop. increase (1000) 0.2744% 0.27°99€ 0.29%*%  -0.05%**
(0.03) (0.03) (0.03) (0.02)
share agri. 2.78 0.622 0.622 -13.3 36.25
(16.06) (45.54)  (47.10)  46.06  (25.93)
share big farms 0.000 0.17 0.17 0.02 -0.40%**
(0.05)  (0.21) (0.11)  (0.20)  (.09)
horsepower per worker  -1.75  -22.66* -22.66 -25.36  21.59%**
(4.89)  (12.00)  (1552)  (30.73)  (8.43)
distance 0.00 -0.13 -0.13* - 147 207%K
(0.02)  (0.10) (055  (0.10)  (.04)
R? 0.00 0.67 0.46 - -
counties 52 52 52 52 52
Observations 52 52 52 437140 437140

Notes: Results obtained from equation (7), standard errors clustered at the district
level. Column one and two give the effect of a population increase on patenting in
percent and number of people estimated on the county level. Column 3 reports the
results from estimating column 2 with our new algorithm, but setting the number of
firms in each county to 1. Evidently, both point estimates are equivalent. Standard
errors are clustered at the district level and derived analytically for column (2) and
with the jackknife for column (3). This leads to different error bands due to the small
number of clusters. Column 4 reports the firm level results, effectively a reweighting
of column (3). Column 5 reports the incumbents-only results, a specification also
often used in firm level analysis. To ensure a causal estimation, we use the indirect
trade shock of Brauer and Kersting (2024): An inflow of rural goods that caused
urbanization and hit some cities’ countrysides harder than others. Data: Bréuer and
Kersting (2024)

Significance: *10 %, **5 %, ***1 %.
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the estimation from column (2). Column (4) is the firm level regression. The
firm level estimate is a reweighted aggregate regression because the exogenous
variables vary at the aggregate level. Column (5) restricts the first difference
in patenting to incumbent firms. It is the only estimate that produces a
substantially different result from the other specifications. It seems that
the increase in patenting is mainly driven by newly entering firms, while
incumbents behave much more like modern firms or counties (Danzer et al.,
2024).

While patenting for individual firms can be recovered from the patent
data, the statistical sources for Prussia only report aggregate outcomes. This
is not in principle an obstacle to estimation, but it restricts the specifications
that can be estimated to those where variables ”add up” to their aggregate
level counterparts. As in this application, researchers might be restricted to
first difference instead of e.g. log-linear specifications. Column (4) and (5)
also suffer from the fact that Prussia did not separately report firm entry, so
the number of firms in each county is the same in (4) and (5) even though (5)
aims to estimate with incumbents only. However, in contemporary applica-
tions, this is less of a problem (e.g. the US census bureau reports aggregate
statistics by firm birth year). Individual level X-variables are of course pos-
sible, but again might be difficult to implement in practice if lagged values
are required. These are not often reported as aggregate statistics, though
this is changing: E.g. the Business Dynamics Statistics by the US census bu-
reau report statistics per cohort of firms that would allow the construction

of lagged aggregate values.

4 Conclusion

This paper shows the viability of a new algorithm that can estimate GMM
in dispersed, unmergeable data sets. This method can account for X- and
Y-variables being stored in different data sets and observations being dis-
persed over different data sets. The algorithm can cope with both problems
simultaneously. We demonstrate the substantial time savings possible in the

special case of one data set, even within the stata language. We also show
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how to recover individual level regressions from aggregate data in special
cases where exogenous shocks are on the same level as aggregate informa-
tion (e.g. counties or sectors). While our technique is much more permissive
than the standard computational strategy, it requires that all instruments
and exogenous regressors are present in all data sets.

In two simulations, we demonstrate that our computational strategy re-
covers the identical parameters that a GMM in the pooled data set would
have yielded, if it were possible. We also show our technique generates sub-
stantial savings in both computation time and potentially data storage needs.

We also present two applications: First, we estimate a firm level pro-
duction function across Europe, even though no pooled representative data
set of European firms exists. For this, we use access to 14 European data
sets of statistical offices and central banks via the CompNet network. We
conclude that the production function differences between especially small
European countries are likely just mismeasurement and do not capture ac-
tually different production technologies. Second, we estimate the effect of
a labor supply shock on Prussian firms’ innovation and outcomes, despite
no firm level data existing. We find that labor shocks invigorated patenting
in Prussia on the aggregate, driven by first-time patenting firms. This is in
stark contrast to today, where innovation moves towards automation but the

number of patents does not increase substantially (Danzer et al., 2024).
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Appendices

A Results of production function estimation

We estimate sector level production elasticities across all NACE 2-digit in-
dustries from 4. Table 4 reports the results for all manufacturing sectors,
using simple OLS.

The most mechanical benefit of using the CompNet database in this way
is that we can estimate these coefficients with 1.9 million observations, which
yields a high precision estimate even for small sectors of the economy. One
interesting finding is that using this mass of firms, estimated returns to scale
are very close to 1 using OLS. The only exception is the tobacco indus-
try which even in all our countries combined only consists of 500+ firms.
Our method uncovers coefficients that are broadly in line with the litera-
ture at large, with the intermediate goods coefficient between % and %. This
is a byproduct of using OLS estimates, since firms adjust intermediate in-
puts fastest when productivity changes thus this coefficient has some reverse
causality issues. This lowers the labor and capital coefficients as well. To
adjust for this problem, we employ an instrumental variable approach as de-

scribed in section 3.2. Large data sets alone cannot rectify this problem.
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Table 4: Output Elasticities by Sector (OLS)

#o0bs m 1 ¢ RTS

Sector (1) 2 3 @ (5
10 Food products 201,173 0.82 0.14 0.04 0.99
11 Beverages 23,235 0.84 0.17 0.02 1.03
12 Tobacco 536 0.76 0.29 0.03 1.08
13 Textiles 63,263 0.75 0.21 0.02 0.99
14 Apparel, dressing etc. 81,592 0.68 0.29 0.02 0.99
15 Leather & leather products 49,787 0.71 0.23 0.04 0.98
16 Wood & wood products 10,3537 0.78 0.15 0.04 0.98
17 Pulp & paper products 30,247 0.75 0.22 0.03 1.01
18 Printing & Replication 96,031 0.69 0.28 0.03 1.00
20 Chemical products 49,454 0.76 0.22 0.03 1.01
21 Pharmaceuticals 8,357 0.72 0.29 0.01 1.02
22 Rubber & Plastics 90,841 0.71 0.26 0.03 1.00
23 Glas & Ceramics 94,234 0.77 0.22 0.03 1.01
24 Basic metals 26,007 0.75 0.21 0.02 0.99
25 Fabricated metal products 362,388 0.63 0.32 0.05 0.99
26 Electronics & optics 49,791 0.70 0.29 0.01 1.00
27 Electrical equip. 52,080 0.71 0.28 0.01 1.01
28 Machinery & equipment 166,997 0.66 0.31 0.02 0.99
29 Motor vehicles 31,055 0.67 0.31 0.01 0.99
30 Other transport equipment 19,842 0.65 0.34 0.02 1.00
31 Furniture manufacturing 92,345 0.81 0.15 0.03 0.99
32 Other manufacturing 68,649 0.68 0.27 0.03 0.98
33 Repair & installation 109,881 0.59 0.35 0.04 0.99

Notes: Results obtained from equation (4) estimated as OLS per sector.
Columns 1-5 report the number of observations, the output elasticities for
intermediate, labor, and capital inputs and the returns to scale. Clustering
at the firm level. Significance: *10 %, **5 %, ***1 %.
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